Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230323, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38583467

RESUMO

Monitoring the extent to which invasive alien species (IAS) negatively impact the environment is crucial for understanding and mitigating biological invasions. Indeed, such information is vital for achieving Target 6 of the Kunming-Montreal Global Biodiversity Framework. However, to-date indicators for tracking the environmental impacts of IAS have been either lacking or insufficient. Capitalizing on advances in data availability and impact assessment protocols, we developed environmental impact indicators to track realized and potential impacts of IAS. We also developed an information status indicator to assess the adequacy of the data underlying the impact indicators. We used data on 75 naturalized amphibians from 82 countries to demonstrate the indicators at a global scale. The information status indicator shows variation in the reliability of the data and highlights areas where absence of impact should be interpreted with caution. Impact indicators show that growth in potential impacts are dominated by predatory species, while potential impacts from both predation and disease transmission are distributed worldwide. Using open access data, the indicators are reproducible and adaptable across scales and taxa and can be used to assess global trends and distributions of IAS, assisting authorities in prioritizing control efforts and identifying areas at risk of future invasions. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Assuntos
Biodiversidade , Espécies Introduzidas , Animais , Reprodutibilidade dos Testes , Anfíbios , Ecossistema
2.
Ecol Evol ; 13(12): e10791, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094152

RESUMO

In animals, the success of particular lineages can be measured in terms of their number of species, the extent of their geographic range, the breadth of their habitats and ecological niches, and the diversity of their morphological and life-history traits. Here, we review the distribution, ecology, morphology and life history of skinks, a diverse lineage of terrestrial vertebrates. We compared key traits between the three subfamilies of skinks, and between skinks and non-scincid lizards. There are currently 1743 described species of skink, which represent 24% of global lizard diversity. Since 2010, 16% of lizard descriptions have been of skinks. The centres of skink diversity are in Australia, New Guinea, southeast Asia, Oceania, Madagascar and central Africa. Compared with non-scincid lizards, skinks have larger distributional ranges, but smaller body sizes. Sexual size dimorphism is rare in skinks. Almost a quarter (23%) of skinks exhibit limb reduction or loss, compared with just 3% of non-scincid lizards. Skinks are more likely to be viviparous (34% of species) compared with non-scincids (13%), and have higher clutch/litter sizes than non-scincids. Although skinks mature later than non-scincids, their longevity is similar to that exhibited by other lizard groups. Most skinks (88%) are active foragers, and they are more likely to be carnivorous than non-scincids. Skinks are more likely to be diurnal or cathemeral than other lizard groups, but they generally have lower field body temperatures compared with non-scincids. The success of skinks appears to be both a result of them hitting upon a winning body plan and ecology, and their capacity to regularly deviate from this body plan and adapt their ecology and life history (e.g. repeated limb reduction and loss, transitions to viviparity) to prevailing conditions.

3.
J Anim Ecol ; 92(10): 2094-2108, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37661659

RESUMO

Climate has a key impact on animal physiology, which in turn can have a profound influence on geographic distributions. Yet, the mechanisms linking climate, physiology and distribution are not fully resolved. Using an integrative framework, we tested the predictions of the climatic variability hypothesis (CVH), which states that species with broader distributions have broader physiological tolerance than range-restricted species, in a group of Lampropholis skinks (8 species, 196 individuals) along a latitudinal gradient in eastern Australia. We investigated several physiological aspects including metabolism, water balance, thermal physiology, thermoregulatory behaviour and ecological performance. Additionally, to test whether organismal information (e.g. behaviour and physiology) can enhance distribution models, hence providing evidence that physiology and climate interact to shape range sizes, we tested whether species distribution models incorporating physiology better predict the range sizes than models using solely climatic layers. In agreement with the CVH, our results confirm that widespread species can tolerate and perform better at broader temperature ranges than range-restricted species. We also found differences in field body temperatures, but not thermal preference, between widespread and range-restricted species. However, metabolism and water balance did not correlate with range size. Biophysical modelling revealed that the incorporation of physiological and behavioural data improves predictions of Lampropholis distributions compared with models based solely on macroclimatic inputs, but mainly for range-restricted species. By integrating several aspects of the physiology and niche modelling of a group of ectothermic animals, our study provides evidence that physiology correlates with species distributions. Physiological responses to climate are central in establishing geographic ranges of skinks, and the incorporation of processes occurring at local scales (e.g. behaviour) can improve species distribution models.


Assuntos
Regulação da Temperatura Corporal , Água , Humanos , Animais , Austrália , Mudança Climática , Temperatura
4.
Aquat Toxicol ; 260: 106577, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207487

RESUMO

Endocrine-disrupting chemicals-compounds that directly interfere with the endocrine system of exposed animals-are insidious environmental pollutants that can disrupt hormone function, even at very low concentrations. The dramatic impacts that some endocrine-disrupting chemicals can have on the reproductive development of wildlife are well documented. However, the potential of endocrine-disrupting chemicals to disrupt animal behaviour has received far less attention, despite the important links between behavioural processes and population-level fitness. Accordingly, we investigated the impacts of 14 and 21-day exposure to two environmentally realistic levels of 17ß-trenbolone (4.6 and 11.2 ng/L), a potent endocrine-disrupting steroid and agricultural pollutant, on growth and behaviour in tadpoles of an anuran amphibian, the southern brown tree frog (Litoria ewingii). We found that 17ß-trenbolone altered morphology, baseline activity and responses to a predatory threat, but did not affect anxiety-like behaviours in a scototaxis assay. Specifically, we found that tadpoles exposed to our high-17ß-trenbolone treatment were significantly longer and heavier at 14 and 21 days. We also found that tadpoles exposed to 17ß-trenbolone showed higher levels of baseline activity, and significantly reduced their activity following a simulated predator strike. These results provide insights into the wider repercussions of agricultural pollutants on key developmental and behavioural traits in aquatic species, and demonstrate the importance of behavioural studies in the ecotoxicological field.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Acetato de Trembolona , Larva , Poluentes Químicos da Água/toxicidade , Anuros
5.
PLoS Biol ; 20(5): e3001544, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617356

RESUMO

The Red List of Threatened Species, published by the International Union for Conservation of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite substantial effort, numerous species remain unassessed or have insufficient data available to be assigned a Red List extinction risk category. Moreover, the Red Listing process is subject to various sources of uncertainty and bias. The development of robust automated assessment methods could serve as an efficient and highly useful tool to accelerate the assessment process and offer provisional assessments. Here, we aimed to (1) present a machine learning-based automated extinction risk assessment method that can be used on less known species; (2) offer provisional assessments for all reptiles-the only major tetrapod group without a comprehensive Red List assessment; and (3) evaluate potential effects of human decision biases on the outcome of assessments. We use the method presented here to assess 4,369 reptile species that are currently unassessed or classified as Data Deficient by the IUCN. The models used in our predictions were 90% accurate in classifying species as threatened/nonthreatened, and 84% accurate in predicting specific extinction risk categories. Unassessed and Data Deficient reptiles were considerably more likely to be threatened than assessed species, adding to mounting evidence that these species warrant more conservation attention. The overall proportion of threatened species greatly increased when we included our provisional assessments. Assessor identities strongly affected prediction outcomes, suggesting that assessor effects need to be carefully considered in extinction risk assessments. Regions and taxa we identified as likely to be more threatened should be given increased attention in new assessments and conservation planning. Lastly, the method we present here can be easily implemented to help bridge the assessment gap for other less known taxa.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Animais , Biodiversidade , Espécies em Perigo de Extinção , Humanos , Filogenia , Répteis
6.
J Wildl Dis ; 58(1): 248-250, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797909

RESUMO

Smooth newts (Lissotriton vulgaris) established recently in Melbourne, Australia. Previously, the population's disease status was unknown. Samples from 34 adults and 78 larvae, collected 2011-16, were tested for two pathogens driving the global amphibian extinction crisis. The fungus Batrachochytrium dendrobatidis was identified (6.3% quantitative PCR positive); ranaviruses were not detected.


Assuntos
Quitridiomicetos , Micoses , Ranavirus , Animais , Batrachochytrium , Micoses/epidemiologia , Micoses/microbiologia , Micoses/veterinária , Salamandridae
7.
Ecol Evol ; 11(17): 11749-11761, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522338

RESUMO

Australia is in the midst of an extinction crisis, having already lost 10% of terrestrial mammal fauna since European settlement and with hundreds of other species at high risk of extinction. The decline of the nation's biota is a result of an array of threatening processes; however, a comprehensive taxon-specific understanding of threats and their relative impacts remains undocumented nationally. Using expert consultation, we compile the first complete, validated, and consistent taxon-specific threat and impact dataset for all nationally listed threatened taxa in Australia. We confined our analysis to 1,795 terrestrial and aquatic taxa listed as threatened (Vulnerable, Endangered, or Critically Endangered) under Australian Commonwealth law. We engaged taxonomic experts to generate taxon-specific threat and threat impact information to consistently apply the IUCN Threat Classification Scheme and Threat Impact Scoring System, as well as eight broad-level threats and 51 subcategory threats, for all 1,795 threatened terrestrial and aquatic threatened taxa. This compilation produced 4,877 unique taxon-threat-impact combinations with the most frequently listed threats being Habitat loss, fragmentation, and degradation (n = 1,210 taxa), and Invasive species and disease (n = 966 taxa). Yet when only high-impact threats or medium-impact threats are considered, Invasive species and disease become the most prevalent threats. This dataset provides critical information for conservation action planning, national legislation and policy, and prioritizing investments in threatened species management and recovery.

8.
Environ Sci Technol ; 55(19): 13024-13032, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34544238

RESUMO

Behavior-modifying drugs, such as antidepressants, are increasingly being detected in waterways and aquatic wildlife around the globe. Typically, behavioral effects of these contaminants are assessed using animals tested in social isolation. However, for group-living species, effects seen in isolation may not reflect those occurring in realistic social settings. Furthermore, interactions between chemical pollution and other stressors, such as predation risk, are seldom considered. This is true even though animals in the wild are rarely, if ever, confronted by chemical pollution as a single stressor. Here, in a 2 year multigenerational experiment, we tested for effects of the antidepressant fluoxetine (measured concentrations [±SD]: 42.27 ± 36.14 and 359.06 ± 262.65 ng/L) on shoaling behavior in guppies (Poecilia reticulata) across different social contexts and under varying levels of perceived predation risk. Shoaling propensity and shoal choice (choice of groups with different densities) were assessed in a Y-maze under the presence of a predatory or nonpredatory heterospecific, with guppies tested individually and in male-female pairs. When tested individually, no effect of fluoxetine was seen on shoaling behavior. However, in paired trials, high-fluoxetine-exposed fish exhibited a significantly greater shoaling propensity. Hence, effects of fluoxetine were mediated by social context, highlighting the importance of this fundamental but rarely considered factor when evaluating impacts of environmental pollution.


Assuntos
Poluentes Ambientais , Poecilia , Animais , Antidepressivos , Comportamento Animal , Feminino , Fluoxetina/toxicidade , Masculino , Comportamento Predatório , Meio Social
9.
PLoS Biol ; 19(6): e3001210, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061821

RESUMO

Global biodiversity loss is a profound consequence of human activity. Disturbingly, biodiversity loss is greater than realized because of the unknown number of undocumented species. Conservation fundamentally relies on taxonomic recognition of species, but only a fraction of biodiversity is described. Here, we provide a new quantitative approach for prioritizing rigorous taxonomic research for conservation. We implement this approach in a highly diverse vertebrate group-Australian lizards and snakes. Of 870 species assessed, we identified 282 (32.4%) with taxonomic uncertainty, of which 17.6% likely comprise undescribed species of conservation concern. We identify 24 species in need of immediate taxonomic attention to facilitate conservation. Using a broadly applicable return-on-investment framework, we demonstrate the importance of prioritizing the fundamental work of identifying species before they are lost.


Assuntos
Biodiversidade , Classificação , Pesquisa , Animais , Austrália , Lagartos/classificação , Serpentes/classificação
10.
Mol Ecol ; 30(13): 3111-3126, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32966639

RESUMO

Environmental DNA (eDNA) sampling can provide accurate, cost-effective, landscape-level data on species distributions. Previous studies have compared the sensitivity of eDNA sampling to traditional sampling methods for single species, but similar comparative studies on multispecies eDNA metabarcoding are rare. Using hierarchical site occupancy detection models, we examined whether key choices associated with eDNA metabarcoding (primer selection, low-abundance read filtering and the number of positive water samples used to classify a species as present at a site) affect the sensitivity of metabarcoding, relative to backpack electrofishing for fish in freshwater streams. Under all scenarios (teleostei and vertebrate primers; 0%, 0.1% and 1% read filtering thresholds; one or two positive samples required to classify species as present), we found that eDNA metabarcoding is, on average, more sensitive than electrofishing. Combining vertebrate and teleostei markers resulted in higher detection probabilities relative to the use of either marker in isolation. Increasing the threshold used to filter low-abundance reads decreased species detection probabilities but did not change our overall finding that eDNA metabarcoding was more sensitive than electrofishing. Using a threshold of two positive water samples (out of five) to classify a species as present typically had negligible effects on detection probabilities compared to using one positive water sample. Our findings demonstrate that eDNA metabarcoding is generally more sensitive than electrofishing for conducting fish surveys in freshwater streams, and that this outcome is not sensitive to methodological decisions associated with metabarcoding.


Assuntos
Código de Barras de DNA Taxonômico , Rios , Animais , Biodiversidade , Monitoramento Ambiental , Água Doce
11.
Sci Rep ; 10(1): 7972, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409706

RESUMO

Niche shifts and environmental non-equilibrium in invading alien species undermine niche-based predictions of alien species' potential distributions and, consequently, their usefulness for invasion risk assessments. Here, we compared the realized climatic niches of four alien amphibian species (Hylarana erythraea, Rhinella marina, Hoplobatrachus rugulosus, and Kaloula pulchra) in their native and Philippine-invaded ranges to investigate niche changes that have unfolded during their invasion and, with this, assessed the extent of niche conservatism and environmental equilibrium. We investigated how niche changes affected reciprocal transferability of ecological niche models (ENMs) calibrated using data from the species' native and Philippine-invaded ranges, and both ranges combined. We found varying levels of niche change across the species' realized climatic niches in the Philippines: climatic niche shift for H. rugulosus; niche conservatism for R. marina and K. pulchra; environmental non-equilibrium in the Philippine-invaded range for all species; and environmental non-equilibrium in the native range or adaptive changes post-introduction for all species except H. erythraea. Niche changes undermined the reciprocal transferability of ENMs calibrated using native and Philippine-invaded range data. Our paper highlights the difficulty of predicting potential distributions given niche shifts and environmental non-equilibrium; we suggest calibrating ENMs with data from species' combined native and invaded ranges, and to regularly reassess niche changes and recalibrate ENMs as species' invasions progress.


Assuntos
Ecossistema , Espécies Introduzidas , Modelos Teóricos , Clima , Conservação dos Recursos Naturais , Geografia , Filipinas , Medição de Risco
12.
J Anim Ecol ; 89(7): 1722-1734, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32221971

RESUMO

The vulnerability of species to climate change is jointly influenced by geographic phenotypic variation, acclimation and behavioural thermoregulation. The importance of interactions between these factors, however, remains poorly understood. We demonstrate how advances in mechanistic niche modelling can be used to integrate and assess the influence of these sources of uncertainty in forecasts of climate change impacts. We explored geographic variation in thermal tolerance (i.e. maximum and minimum thermal limits) and its potential for acclimation in juvenile European common frogs Rana temporaria along elevational gradients. Furthermore, we employed a mechanistic niche model (NicheMapR) to assess the relative contributions of phenotypic variation, acclimation and thermoregulation in determining the impacts of climate change on thermal safety margins and activity windows. Our analyses revealed that high-elevation populations had slightly wider tolerance ranges driven by increases in heat tolerance but lower potential for acclimation. Plausibly, wider thermal fluctuations at high elevations favour more tolerant but less plastic phenotypes, thus reducing the risk of encountering stressful temperatures during unpredictable extreme events. Biophysical models of thermal exposure indicated that observed phenotypic and plastic differences provide limited protection from changing climates. Indeed, the risk of reaching body temperatures beyond the species' thermal tolerance range was similar across elevations. In contrast, the ability to seek cooler retreat sites through behavioural adjustments played an essential role in buffering populations from thermal extremes predicted under climate change. Predicted climate change also altered current activity windows, but high-elevation populations were predicted to remain more temporally constrained than lowland populations. Our results demonstrate that elevational variation in thermal tolerances and acclimation capacity might be insufficient to buffer temperate amphibians from predicted climate change; instead, behavioural thermoregulation may be the only effective mechanism to avoid thermal stress under future climates.


Assuntos
Aclimatação , Mudança Climática , Animais , Rana temporaria , Temperatura
13.
J Biomed Opt ; 25(3): 1-7, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31650742

RESUMO

A fiber-based endoscopic imaging system combining narrowband red-green-blue (RGB) reflectance with optical coherence tomography (OCT) and autofluorescence imaging (AFI) has been developed. The system uses a submillimeter diameter rotary-pullback double-clad fiber imaging catheter for sample illumination and detection. The imaging capabilities of each modality are presented and demonstrated with images of a multicolored card, fingerprints, and tongue mucosa. Broadband imaging, which was done to compare with narrowband sources, revealed better contrast but worse color consistency compared with narrowband RGB reflectance. The measured resolution of the endoscopic system is 25 µm in both the rotary direction and the pullback direction. OCT can be performed simultaneously with either narrowband RGB reflectance imaging or AFI.


Assuntos
Endoscópios , Tecnologia de Fibra Óptica/instrumentação , Imagem Óptica/métodos , Tomografia de Coerência Óptica/métodos , Animais , Catéteres , Endoscopia , Células Epiteliais/citologia , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído
14.
Glob Chang Biol ; 25(8): 2633-2647, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31050846

RESUMO

Insights into the causal mechanisms that limit species distributions are likely to improve our ability to anticipate species range shifts in response to climate change. For species with complex life histories, a mechanistic understanding of how climate affects different lifecycle stages may be crucial for making accurate forecasts. Here, we use mechanistic niche modeling (NicheMapR) to derive "proximate" (mechanistic) variables for tadpole, juvenile, and adult Rana temporaria. We modeled the hydroperiod, and maximum and minimum temperatures of shallow (30 cm) ponds, as well as activity windows for juveniles and adults. We then used those ("proximate") variables in correlative ecological niche models (Maxent) to assess their role in limiting the species' current distribution, and to investigate the potential effects of climate change on R. temporaria across Europe. We further compared the results with a model based on commonly used macroclimatic ("distal") layers (i.e., bioclimatic layers from WorldClim). The maximum temperature of the warmest month (a macroclimatic variable) and maximum pond temperatures (a mechanistic variable) were the most important range-limiting factors, and maximum temperature thresholds were consistent with the observed upper thermal limit of R. temporaria tadpoles. We found that range shift forecasts in central Europe are far more pessimistic when using distal macroclimatic variables, compared to projections based on proximate mechanistic variables. However, both approaches predicted extensive decreases in climatic suitability in southern Europe, which harbors a significant fraction of the species' genetic diversity. We show how mechanistic modeling provides ways to depict gridded layers that directly reflect the microenvironments experienced by organisms at continental scales, and to reconstruct those predictors without extrapolation under novel future conditions. Furthermore, incorporating those predictors in correlative ecological niche models can help shed light on range-limiting processes, and can have substantial impacts on predictions of climate-induced range shifts.


Assuntos
Mudança Climática , Ecossistema , Anfíbios , Animais , Europa (Continente) , Temperatura
15.
Q Rev Biol ; 92(2): 123-49, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29562120

RESUMO

Our best hope of developing innovative methods to combat invasive species is likely to come from the study of high-profile invaders that have attracted intensive research not only into control, but also basic biology. Here we illustrate that point by reviewing current thinking about novel ways to control one of the world's most well-studied invasions: that of the cane toad in Australia. Recently developed methods for population suppression include more effective traps based on the toad's acoustic and pheromonal biology. New tools for containing spread include surveillance technologies (e.g., eDNA sampling and automated call detectors), as well as landscape-level barriers that exploit the toad's vulnerability to desiccation­a strategy that could be significantly enhanced through the introduction of sedentary, range-core genotypes ahead of the invasion front. New methods to reduce the ecological impacts of toads include conditioned taste aversion in free-ranging predators, gene banking, and targeted gene flow. Lastly, recent advances in gene editing and gene drive technology hold the promise of modifying toad phenotypes in ways that may facilitate control or buffer impact. Synergies between these approaches hold great promise for novel and more effective means to combat the toad invasion and its consequent impacts on biodiversity.


Assuntos
Adaptação Fisiológica , Biodiversidade , Bufo marinus/fisiologia , Ecossistema , Espécies Introduzidas , Controle de Pragas/métodos , Animais , Austrália , Dinâmica Populacional
16.
Proc Biol Sci ; 283(1825): 20153037, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911962

RESUMO

The impact of an invasive species depends upon the extent of area across which it ultimately spreads. A powerful strategy for limiting impact, then, is to limit spread, and this can most easily be achieved by managing or reinforcing natural barriers to spread. Using a simulation model, we show that rapid evolutionary increases in dispersal can render permeable an otherwise effective barrier. On the other hand, we also show that, once the barrier is reached, and if it holds, resultant evolutionary decreases in dispersal rapidly make the barrier more effective. Finally, we sketch a strategy--the genetic backburn--in which low-dispersal individuals from the range core are translocated to the nearside of the barrier ahead of the oncoming invasion. We find that the genetic backburn--by preventing invasion front genotypes reaching the barrier, and hastening the evolutionary decrease in dispersal--can make barriers substantially more effective. In our simulations, the genetic backburn never reduced barrier strength, however, the improvement to barrier strength was negligible when there was substantial long-distance dispersal, or when there was no genetic variation for dispersal distance. The improvement in barrier strength also depended on the trade-off between dispersal and competitive ability, with a stronger trade-off conferring greater power to the genetic backburn.


Assuntos
Distribuição Animal , Evolução Biológica , Espécies Introduzidas , Animais , Austrália , Bufonidae/genética , Bufonidae/fisiologia , Variação Genética , Modelos Biológicos , Dinâmica Populacional
17.
Mol Ecol Resour ; 16(3): 673-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26558345

RESUMO

Environmental DNA (eDNA) sampling is prone to both false-positive and false-negative errors. We review statistical methods to account for such errors in the analysis of eDNA data and use simulations to compare the performance of different modelling approaches. Our simulations illustrate that even low false-positive rates can produce biased estimates of occupancy and detectability. We further show that removing or classifying single PCR detections in an ad hoc manner under the suspicion that such records represent false positives, as sometimes advocated in the eDNA literature, also results in biased estimation of occupancy, detectability and false-positive rates. We advocate alternative approaches to account for false-positive errors that rely on prior information, or the collection of ancillary detection data at a subset of sites using a sampling method that is not prone to false-positive errors. We illustrate the advantages of these approaches over ad hoc classifications of detections and provide practical advice and code for fitting these models in maximum likelihood and Bayesian frameworks. Given the severe bias induced by false-negative and false-positive errors, the methods presented here should be more routinely adopted in eDNA studies.


Assuntos
Bioestatística/métodos , Biota , DNA/genética , DNA/isolamento & purificação , Ecossistema , Reações Falso-Positivas , Metagenômica/métodos , Biologia Computacional/métodos , DNA/química
18.
Ecol Appl ; 25(7): 1944-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26591459

RESUMO

Effective management of alien species requires detecting populations in the early stages of invasion. Environmental DNA (eDNA) sampling can detect aquatic species at relatively low densities, but few studies have directly compared detection probabilities of eDNA sampling with those of traditional sampling methods. We compare the ability of a traditional sampling technique (bottle trapping) and eDNA to detect a recently established invader, the smooth newt Lissotriton vulgaris vulgaris, at seven field sites in Melbourne, Australia. Over a four-month period, per-trap detection probabilities ranged from 0.01 to 0.26 among sites where L. v. vulgaris was detected, whereas per-sample eDNA estimates were much higher (0.29-1.0). Detection probabilities of both methods varied temporally (across days and months), but temporal variation appeared to be uncorrelated between methods. Only estimates of spatial variation were strongly correlated across the two sampling techniques. Environmental variables (water depth, rainfall, ambient temperature) were not clearly correlated with detection probabilities estimated via trapping, whereas eDNA detection probabilities were negatively correlated with water depth, possibly reflecting higher eDNA concentrations at lower water levels. Our findings demonstrate that eDNA sampling can be an order of magnitude more sensitive than traditional methods, and illustrate that traditional- and eDNA-based surveys can provide independent information on species distributions when occupancy surveys are conducted over short timescales.


Assuntos
DNA/genética , Monitoramento Ambiental/métodos , Espécies Introduzidas , Salamandridae/genética , Animais , Austrália , DNA/química , Humanos , Salamandridae/classificação , Água/química
19.
Sci Total Environ ; 534: 65-78, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25864797

RESUMO

Intensification of the use of natural resources is a world-wide trend driven by the increasing demand for water, food, fibre, minerals and energy. These demands are the result of a rising world population, increasing wealth and greater global focus on economic growth. Land use intensification, together with climate change, is also driving intensification of the global hydrological cycle. Both processes will have major socio-economic and ecological implications for global water availability. In this paper we focus on the implications of land use intensification for the conservation and management of freshwater ecosystems using Australia as an example. We consider this in the light of intensification of the hydrologic cycle due to climate change, and associated hydrological scenarios that include the occurrence of more intense hydrological events (extreme storms, larger floods and longer droughts). We highlight the importance of managing water quality, the value of providing environmental flows within a watershed framework and the critical role that innovative science and adaptive management must play in developing proactive and robust responses to intensification. We also suggest research priorities to support improved systemic governance, including adaptation planning and management to maximise freshwater biodiversity outcomes while supporting the socio-economic objectives driving land use intensification. Further research priorities include: i) determining the relative contributions of surface water and groundwater in supporting freshwater ecosystems; ii) identifying and protecting freshwater biodiversity hotspots and refugia; iii) improving our capacity to model hydro-ecological relationships and predict ecological outcomes from land use intensification and climate change; iv) developing an understanding of long term ecosystem behaviour; and v) exploring systemic approaches to enhancing governance systems, including planning and management systems affecting freshwater outcomes. A major policy challenge will be the integration of land and water management, which increasingly are being considered within different policy frameworks.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Água Doce/análise , Abastecimento de Água/estatística & dados numéricos , Austrália , Biodiversidade , Mudança Climática , Secas , Água Subterrânea , Hidrologia
20.
Proc Natl Acad Sci U S A ; 111(28): 10233-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982155

RESUMO

Accurate forecasts of biological invasions are crucial for managing invasion risk but are hampered by niche shifts resulting from evolved environmental tolerances (fundamental niche shifts) or the presence of novel biotic and abiotic conditions in the invaded range (realized niche shifts). Distinguishing between these kinds of niche shifts is impossible with traditional, correlative approaches to invasion forecasts, which exclusively consider the realized niche. Here we overcome this challenge by combining a physiologically mechanistic model of the fundamental niche with correlative models based on the realized niche to study the global invasion of the cane toad Rhinella marina. We find strong evidence that the success of R. marina in Australia reflects a shift in the species' realized niche, as opposed to evolutionary shifts in range-limiting traits. Our results demonstrate that R. marina does not fill its fundamental niche in its native South American range and that areas of niche unfilling coincide with the presence of a closely related species with which R. marina hybridizes. Conversely, in Australia, where coevolved taxa are absent, R. marina largely fills its fundamental niche in areas behind the invasion front. The general approach taken here of contrasting fundamental and realized niche models provides key insights into the role of biotic interactions in shaping range limits and can inform effective management strategies not only for invasive species but also for assisted colonization under climate change.


Assuntos
Bufo marinus/fisiologia , Mudança Climática , Ecossistema , Espécies Introduzidas , Modelos Biológicos , Animais , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA